If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2-21=0
a = 40; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·40·(-21)
Δ = 3360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3360}=\sqrt{16*210}=\sqrt{16}*\sqrt{210}=4\sqrt{210}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{210}}{2*40}=\frac{0-4\sqrt{210}}{80} =-\frac{4\sqrt{210}}{80} =-\frac{\sqrt{210}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{210}}{2*40}=\frac{0+4\sqrt{210}}{80} =\frac{4\sqrt{210}}{80} =\frac{\sqrt{210}}{20} $
| -17y-12=-148 | | 3(5x+9)=49+46 | | -36=-7r | | 3p+4p+p=8 | | 2x+10=-9x-12+9x | | 2d=(d+12+12) | | 5(4y-3)=45 | | 250-35x=100-25x | | 101=x-14 | | 7m=7m+16 | | -3b=2=4b+9 | | 2y-8-6y=4y-6-2 | | 5000+x=5000x | | 250+35x=100+25x | | 2x-15x=0 | | 3x=-4+3x | | 7x^2+77x=-196 | | (8x+21)+(10x-5)=180 | | 5x+80=-140+2x | | -3(w-19)=9 | | 7(1−7x)+5x=227 | | 6x-9x-7x+x=0 | | 0.3(10x+15)=4.3(.2x+5) | | 3w+6w-3w=-12 | | -7(-n-1)=7+7n | | 6x3=7x3 | | –2b+2=4 | | -6(x-5)=5(x+1) | | r/20=1 | | z2=7 | | m/3− –50=59 | | -14=x/5-5 |